Lower Bounds for Kazhdan-lusztig Polynomials from Patterns

نویسندگان

  • SARA C. BILLEY
  • TOM BRADEN
چکیده

Kazhdan-Lusztig polynomials Px,w(q) play an important role in the study of Schubert varieties as well as the representation theory of semisimple Lie algebras. In particular, the value Px,w(1) is the dimension of the intersection cohomology sheaf of the Schubert variety Xw at the T -fixed point indexed by x [KL2]. It is also the multiplicity of a certain irreducible module in a Verma module [BeBe][BryK]. In this paper, we give a lower bound for the values Px,w(1) in terms of “patterns”. These patterns correspond with special subgroups of the Weyl group generated by reflections. This notion generalizes the concept of patterns and pattern avoidance for permutations to all Weyl groups. The main tool of the proof is Braden’s ”hyperbolic localization” on intersection cohomology. This construction gives some insight into the geometry behind pattern avoidance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upper and Lower Bounds for Kazhdan-Lusztig Polynomials

We give upper and lower bounds for the Kazhdan-Lusztig polynomials of any Coxeter group W. If W is nite we prove that, for any k 0, the k-th coeecient of the Kazhdan-Lusztig polynomial of two elements u, v of W is bounded from above and below by a polynomial (which depends only on k) in l(v)?l(u). In particular, this implies the validity of Lascoux-Schutzenberger's conjecture for all suuciently...

متن کامل

Special matchings and Kazhdan-Lusztig polynomials

In 1979 Kazhdan and Lusztig defined, for every Coxeter group W , a family of polynomials, indexed by pairs of elements ofW , which have become known as the Kazhdan-Lusztig polynomials of W , and which have proven to be of importance in several areas of mathematics. In this paper we show that the combinatorial concept of a special matching plays a fundamental role in the computation of these pol...

متن کامل

Embedded Factor Patterns for Deodhar Elements in Kazhdan-Lusztig Theory

The Kazhdan-Lusztig polynomials for finite Weyl groups arise in the geometry of Schubert varieties and representation theory. It was proved very soon after their introduction that they have nonnegative integer coefficients, but no simple all positive interpretation for them is known in general. Deodhar [16] has given a framework for computing the Kazhdan-Lusztig polynomials which generally invo...

متن کامل

M ay 2 00 8 Leading coefficients of the Kazhdan - Lusztig polynomials for an Affine Weyl group of type

In this paper we compute the leading coefficients μ(y,w) of the Kazhdan-Lusztig polynomials Py,w for an affineWeyl group of type B̃2. When a(y) ≤ a(w) or a(y) = 2 and a(w) = 1, we compute all μ(y,w) clearly, where a(y) is the a-function of a Coxeter group defined by Lusztig (see [L1]). With these values μ(y,w), we are able to show that a conjecture of Lusztig on distinguished involutions is true...

متن کامل

Linear Algebra Construction of Formal Kazhdan-lusztig Bases

General facts of linear algebra are used to give proofs for the (wellknown) existence of analogs of Kazhdan-Lusztig polynomials corresponding to formal analogs of the Kazhdan-Lusztig involution, and of explicit formulae (some new, some known) for their coefficients in terms of coefficients of other natural families of polynomials (such as the corresponding formal analogs of the Kazhdan-Lusztig ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002